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Abstract

In this paper\ an asymmetric theory of nonlocal elasticity with nonlocal body couple is developed on the
basis of the axiom system in nonlocal continuum _eld theory[ The Galileo invariance is used for determining
the explicit form of the constitutive equations[ It is shown that both continuum _eld theory and qua!
sicontinuum theory give the same constitutive equations and _eld equations for the general theory of
nonlocal elasticity[ Finally\ the relations among nonlocal theory\ couple stress theory\ and higher gradient
theory are investigated[ Þ 0888 Published by Elsevier Science Ltd[ All rights reserved[

0[ Introduction

In a previous paper ðPart 0 of asymmetry theory of nonlocal elasticity "Gao\ 0888#Ł\ a more
general model of nonlocal elasticity in quasicontinuum _eld theory has been developed[ It has
been shown that the local rotation of an atomic lattice plays a very important role in solid
mechanics[ Both symmetric stress and antisymmetric stress are nonlocal function of strain and
local rotation[ The nonlocal constitutive parameters are explicitly expressed in terms of the force
constants connecting the atomic lattices[

This paper aims to develop a general theory of nonlocal elasticity according to nonlocal con!
tinuum _eld theory developed by Eringen "Eringen\ 0865#[ First the constitutive functional is
selected based on the dual relationship between strain and symmetric stress\ local rotation and
nonlocal body couple\ respectively[ It is also shown that the two restriction conditions cor!
respondent to the rectilinear uniform motion and rigid body rotation for internal energy derived
from the Galileo invariance are su.cient conditions of nonlocal conservative laws[ The internal
energy can be expressed in integral form due to Friedman and Katz|s representative theorem[ The
kernel function of the internal energy in integral from "or called as local internal energy# is
expanded as a polynomial function of strain and local rotation[ Thus\ the constitutive equations
of symmetric stress and nonlocal body couple are explicitly expressed as the nonlocal function of
strain and local rotation[ Finally\ the relations among nonlocal theory\ couple stress theory and
higher gradient theory are also investigated[
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1[ The conservation laws of nonlocal theory

Since the characteristics of interacting force between atoms is long range\ a body being in motion
is regarded as a whole organic body[ Thus it is assumed that the conservation laws in nonlocal
_eld theory governing the mechanical state of a continuum body is integral forms[ For small
deformation\ the conservation laws in integral form is localized by means of GreenÐGauss theorem[
The localizable conservation laws are given by]

r¼ � r¦rVm =m gn

r¼ dn � 9 "0#

rVþ¦r¼V−rf−tk =m � rF
 gn

rF
dn � 9 "1#

rx×F
−ek×tk−rc � rL
 gn

rL
 dn � 9 "2#

rU � r¼ 0
0

1
V = V−U1−rF
 = V¦tk = V\k

¦
0

1
"rx×F
−ek×tk−rL
# = 9×V¦rh¼ gn

rh¼ dn � 9 "3#

where r is the density of mass\ U is the internal energy\ V is the velocity vector\ x is the position
vector\ f is the body force vector\ tk is the vector of surface force\ c is the external body couple
vector\ tn is the stress vector in the normal direction n "see Eringen\ 0865^ Gao and Chen\ 0881#[

r¼ \ F
\ L
\ h¼ are\ respectively\ nonlocal mass\ nonlocal body force\ nonlocal body couple and
nonlocal energy[ These nonlocal variables describe the global properties of a body and must satisfy
the nonlocal conservative laws "see\ Eringen\ 0865#[ It is noted that when the chemical action in a
body is ignored\ r¼ � 9[

We decompose the work done by stresses into two parts] one is from symmetric stress and strain
rate^ another is from antisymmetric stress and local rotation rate\ given by

tk = V\k � tskle¾kl¦taklv¾ lk "4#

where

e¾kl �
0

1
"Vk\l¦Vl\k#\ v¾ lk �

0

1
"Vk\l−Vl\k#^ and tskl �

0

1
"tkl¦tlk#\ takl �

0

1
"tkl−tlk#[

When the external body couple is neglected\ the antisymmetric stress is correspondent to nonlocal
couple\ i[e[

eijkrJ
k � taij "5#

where J
� x×F
−L
[ In this case\ the conservation law of energy becomes
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rUþ � ts = e¾−rF
 = V¦rJ
 = u¾¦rh¼ "6#

where u¾ �
0

1
9×V[

The local rotation can make a contribution to strain energy because of the nonlocal e}ect\ but
in classical mechanics\ the local rotation is regarded as a rigid body rotation not to be associated
with the deformation of a body[ However\ the local rotation is the relative rotation between atoms
or particles and is a very important characteristic variable representing the deformation of a body
"as discussed in Part 0^ see Gao\ 0888#[ In fact\ the compatible conditions of small deformation
are still represented by local rotation angle[ For example\ the compatible condition of geometric
deformation

11e00

1x1
1

¦
11e11

1x1
0

�
11e01

1x0 1x1

"7#

can be rewritten as

1

1x1 0
1u2

1x01�
1

1x0 0
1u2

1x11 "8#

which is also the smoothing continuous condition of local rotation[ If the equation is violated\ the
distribution of the local rotation in a deformation body is not continuous and a microcrack can
be initiated[ Also the eqn "6# shows that the dual variable of the local rotation is nonlocal body
couple rJ
[ In the general theory of nonlocal elasticity without micropolar rotation\ the e}ect of
local rotation should be considered and the stress should be asymmetric[

2[ The conservation relation of nonlocal elasticity with nonlocal body couple

From the energy conservative law given by eqn "6#\ we select the constitutive variables as follows

x � ðe\ u\ xŁ^ x? � ðe?\ u?\ x?Ł "09#

where e is a strain tensor^ u"�9×u# is a local rotation vector^ a prime " #? placed on quantities
indicates that they depend on x?\ e[g[

e? � e"x?\ t#\ u? � u"x?\ t# "00#

x? represents the position vector of any particle in the domain n occupied by a body[
According to the axiom of Causality in nonlocal theory\ the mechanical state of a point depends

on the motion of all particles of a body[ It is assumed that the constitutive functional of the internal
energy is

U � U"x\ x?# "01#

By substituting the internal energy given by eqn "01# into eqn "6#\ we obtain a linear equation
of x[ For all independent motions throughout n\ the linear equation is true if and only if
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−rF
� r
1U

1x
¦gn 0r

dU

dx?1
�

dn"x?#

ts � r
1U

1e
¦gn 0r

dU

de?1
�

dn"x?#

rJ
� r
1U

1u
¦gn 0r

dU

du?1
�

dn"x?#

L−rh¼ � 9 "02#

where

L � gn $0r
dU

dx?
= x¾ ?1−0r

dU

dx?
= x¾ "x?#1

�

% dn"x?#

which are the constitutive equations in nonlocal elasticity with the action of nonlocal body couple
"the detailed calculation is seen in Gao and Chen\ 0881#[

The constitutive functional must satisfy Galilean invariance[ Here\ we consider the case that
both the internal energy and rate of the internal energy are invariant with respect to the rigid
motion of the body "see Mason\ 0879#[ First\ let us consider rectilinear uniform motion

x : x¹ � x¦V9t^ "V9 is an arbitrary constant vector# "03#

From the Galilean invariance\ we obtain

Uþ "e\ u\ x¹ ^ e?\ u?\ x¹ ?# � Uþ "e\ u\ x^ e?\ u?\ x?# "04#

By expanding the above equation and eliminating the same terms in both sides of the equation\
we have the restriction condition of the constitutive function\ given by

r
1U

1x
¦gn 0r

dU

dx?1
�

dn"x?#¦gn 00r
dU

dx?1−0r
dU

dx?1
�

1 dn"x?# � 9 "05#

The constitutive equation of nonlocal body force F
 given by "02a# can be rewritten as follows

rF
� gn 00r
dU

dx?1−0r
dU

dx?1
�

1 dn"x?# "06#

Since the integrand in eqn "06# is symmetric on the integral variables x? and x\ the conservation
law on the nonlocal body force is satis_ed[

Second\ let us consider a rigid body rotation with a constant rotational velocity v9]

x¾ : x¹ � x¾¦v9×x

x : x¹ � x¦f^
df

dt
� v9×x "07#

For Galilean invariance\ we have
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1U

1x
¦gn

1U

1x?
dn"x?# �

1U

1x¹
¦gn

1U

1x¹ ?
dn"x?#

Uþ ðe\ u¹\ x¹ ^ e?\ u¹?\ x¹ ?Ł � Uþ ðe\ u\ x^ e?\ u?\ x?Ł "08#

where x¹ � ðe\ u¹\ x¹ Ł^ x¹ ? � ðe?\ u¹?\ x¹ ?Ł[
By expanding eqn "08b# and eliminating the same terms on both sides\ and from the property

of the vector analysis\ we have

x× $r
1U

1x
¦gn 0r

dU

dx?1
�

dn"x?#¦r
1U

1u
¦gn 0r

dU

du?1
�

dn"x?#%
� −gn $x?× 0r

dU

1x?1−x×0r
dU

dx?1
�

¦0r
dU

du?1−0r
dU

du?1
�

% dn"x?# "19#

which is another restriction condition on the constitutive function U from the Galileo invariance[
Thus\ the constitutive equation of nonlocal body couple L
 can be rewritten as follows

rL
 � r"x×F
−J
#

� −x×$r
1U

1x
¦gn 0r

dU

dx?1
�

dn"x?#−r
1U

1u
¦gn 0r

dU

du?1
�

dn"x?#%
� gn $x?× 0r

dU

1x?1−x×0r
dU

dx?1
�

¦0r
dU

du?1−0r
dU

du?1
�

% dn"x?# "10#

Therefore\ the conservation law for nonlocal body couple Ðn rL dn � 9 is satis_ed since the
integrand is symmetric on x? and x[

From the symmetry of the integral function L on x? and x given in eqn "02#\ we have

gn

rh¼ dn � gn

L dn � 9 "11#

Thus\ we obtain the theorem that the su.cient condition of nonlocal physical quantities "F
\ L
#
satisfying the nonlocal conservation laws is that the constitutive functional satis_es the Galilean
invariance\ i[e[ the internal energy must satisfy the restriction eqns "05# and "19#[

3[ The linear theory

According to the discussion given by Eringen "0870\ 0872#\ it is not necessary to employ a
general functional for describing nonlocal behavior of most materials[ In the sense of Friedman
and Katz "0855#\ the additive functional is adequate to describe behavior of nonlocal solids[ From
the representative theorem of additive functional proposed by Friedman and Katz\ we have
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rU � gn

Cðx\ x?^ u\ u?^ e\ e?Ł dn"x?# "12#

In this case\ Frechet derivative for the constitutive functional U can be calculated by

gn

d"rU#

dG?
dn"x?# � gn

1c

1G?
dn"x?# "13#

where G? represents any of e?\ u? and x?[
Substituting eqn "12# into eqn "05#\ we have the restriction condition on c\ given by

gn 0
1c

1x
¦

1c

1x?1 dn"x?# � 9 "14#

For homogeneous materials\ eqn "14# is not violated if and only if

c"x\ x?^ u\ u?^ e\ e?# � c"=x−x?=^ u\ u?^ e\ e?# "15#

Substituting eqn "15# into eqn "19#\ we have another restricted condition given by

gn 0
1c

1u
¦

1c

1u?1 dn"x?# � 9 "16#

By expanding the function c as polynomial function and eliminating the higher order terms\ we
have

c"=x−x?=^ u\ u?^ e\ e?# � cu"=x−x?=^ u\ u?#¦ce"=x−x?=^ e\ e?#¦cue"=x−x?=^ u\ u?^ e\ e?# "17#

where

cu"=x−x?=^ u\ u?# � c9"=x−x?=#] u? & u?¦c0"=x−x?=#] u & u?¦c1"=x−x?=#] u & u

ce"=x−x?=^ e\ e?# � c2"=x−x?=#] e? & e?¦c3"=x−x?=#] e & e?¦c4"=x−x?=#] e & e

cue"=x−x?=^ u\ u?^ e\ e?# � c5"=x−x?=#] e & u¦c6"=x−x?=#] e & u?

¦c7"=x−x?=#] e? & u¦c8"=x−x?=#] e? & u?

Since u\ u?^ e\ e? can be regarded as independent variables\ substituting eqn "17# into eqn "16#
leads to the restriction condition for the functions ci "i � 9\ 0\ 1\ 5\ 6\ 7\ 8#\ given by

c9 � c1 � −
0

1
c0

c5¦c6 � 9^ c7¦c8 � 9 "18#

Therefore\ we obtain

cu"=x−x?=\ u\ u?# � c9"=x−x?=#] U? & U?

cue"=x−x?=^ u\ u?^ e\ e?# � c6"=x−x?=#] e & U?¦c8"=x−x?=#] e? & U? "29#

where U? � u?−u[
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It is noted that cu � c�u[ We assume that ce � c�e[ Substituting cu\ cue given by eqn "29# and ce

given in eqn "17# into eqn "06# and eqn "10#\ respectively\ we obtain rF
� 9 and

rL
 � −rJ
gn $
1c

1u?
−0

1c

1u?1
�

% dn"x?# � 3 gn

c9"=x−x?=# = U? dn"x?#

¦1C5] e¦1 gn

c7"=x−x?=#] e dn"x?# "20#

where

C5 � gn

c5"=x−x?=# dn"x?#

By substituting eqn "17# into eqn "02b#\ we have

ts � gn $
1ce

1e
¦0

1ce

1e?1
�

% dn"x?# � S0] e¦gn

S1"=x−r?=#] e? dn"x?#

¦gn

ðc6"=x−x?=#¦c7"=x−x?=#Ł] U? dn"x?# "21#

where

S0 � 3 gn

c2"=x−x?=# dn"x?#^ S1"=x−x?=# � 1c3"=x−x?=#

For isotropic\ nonlocal and elastic materials\ the tensors "c9\ S0\ S1#^ ci "i � 5\ 6\ 7\ 8# are isotropic[
It is noted that ci "i � 5\ 6\ 7\ 8# are isotropic tensors of third rank[ The isotropic tensors of third
rank are expressed as ci � cio "ci "i � 5\ 6\ 7\ 8# are scalars^ o is Eddington tensor#[ From the
constitutive equations of symmetric stress and nonlocal body couple\ the isotropic tensors ci

"i � 5\ 6\ 7\ 8# should be symmetric with respect to two of the subscripts[ Thus\ ci "i � 5\ 6\ 7\ 8# � 9[
Other isotropic tensors are expressed as follows

3c9"=x−x?=# � C9"=x−x?=#dklek & el

S0 � ðl9dijdkl¦m9dikdjl¦n9dildjkŁ"ei & ek & ej & el#

S1"=x−x?=# � ðl0"=x−x?=#dijdkl¦m0"=x−x?=#dikdjl

¦n0"=x−x?=#dildjkŁ"ei & ej & ek & el#

o � eijkek & ej & ek "22#

where ek "k � 0\ 1\ 2# are base vectors of Cartesian coordinate system[
Then\ the developed constitutive equations of nonlocal symmetric stress and nonlocal body

couple are\ respectively\ nonlocal function of the strain and local rotation\ given by
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rL
 � gn

C9"=x−x?=#U"x?# dn"x?#

ts � l9I tr e¦"m9¦n9#e

¦gn

ðl0"=x−x?=#I tr e?¦"m0"=x−x?=#¦n0"=x−x?=##e?Ł dn"x?# "23#

where I � dij"ei & ej#[
As discussed in Part 0 "Gao\ 0888#\ the nonlocal characteristic functions C9\ l0\ m0 and n0 are\

respectively\ moment and force constants connecting atomic lattices[ For homogeneous\ isotropic
solids\ the _eld equations of the theory are

r
11ui

1t1
� rfi¦tji\j

eijktij¦rL
k � 9

tij � ts
ij¦taij "24#

Thus\ the general theory of nonlocal elasticity with nonlocal body couple has been developed[
It is noted that it is an asymmetric theory and is the same as that developed from quasicontinuum
_eld theory[ For isotropic materials\ the symmetric stress and nonlocal body couple given in eqn
"22# are nonlocal function of strain and local rotation\ respectively[ For anisotropic materials\
both symmetric stress and nonlocal body couple given in eqns "20# and "21# are nonlocal function
of strain and local rotation[ The couple e}ects of local rotation on symmetric stress or strain on
nonlocal body couple can be found out in the localized deformation in metal and deformed
composite\ such as kink band\ etc[ A further discussion for anisotropic materials will be in another
paper[ In the following the discussion of asymmetric theory of nonlocal elasticity focuses on the
isotropic material[

4[ Discussion

4[0[ The nonlocal property of asymmetric stress

The nonlocal body couple exists in the nonlocal media[ From the equilibrium equation of
moments given by eqn "24# and constitutive equation of nonlocal body couple\ we have

e] t � −rL
 � −gn

C9"=x−x?=#U"x?# dn"x?# "25#

which indicates that the nonlocal body couple is caused by nonlocal e}ect of local rotation[ When
the nonlocal e}ect of local rotation is neglected\ i[e[ rL
 � 9\ the antisymmetric stress disappears[
The theory can be reduced to the KronerÐEringen model of the nonlocal elasticity[ In this case\
due to the de_nition of nonlocal functional space\ the nonlocal characteristic function C9"x# has
the following characteristics
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"i# =x−x?= : �^ C9"=x−x?=# : 9^

"ii# gn

C9"=x−x?=# dn � constant^

"iii# when nonlocal characteristic length a : 9\ C9"=x−x?=# : 9

The nonlocal characteristic function C9"x# can be expressed explicitly as function of moment
constants associated with atomic lattices inter!connecting and the interval distance of atoms
regarded as the internal length "or nonlocal characteristic length# "see Gao\ 0888#[ Two charac!
teristic functions presented in Part 0 "Gao\ 0888#\ the quasicontinuum function of discrete moments
and a linear approximating function associated with nonlinear dispersion of plane wave of one!
dimensional atomic lattice chain\ satisfy the above requirement for nonlocal characteristic function[
For isotropic material\ the nonlocal e}ect leading to asymmetry comes from the long range
property of interaction of atoms in the metal materials and non!uniform distribution of atomic
forces in the more microscopic structures[

It should be indicated that the e}ect of C9"x# on the nonlinear dispersion of plane waves can be
found out from the di}erence between longitudinal wave and transverse wave[ The detailed and
more discussion on C9"x# is seen in the paper "Gao and Chen\ 0881#[

4[1[ The couple stress theory is a special case of nonlocal asymmetric theory

By expanding rotation angle u"x?# at the point x\ we have

u"x?# � u"x#¦"x?−x# = 9u¦
0

1
ð"x?−x# = 9Ł1u¦= = = "26#

Substituting eqn "26# into eqn "25# and eliminating the higher gradient terms\ we have

rL
 � R = 9u¦
b

1
91u "27#

where

R � gn

"x?−x# = C9"=x−x?=# dn"x?#

b � gn

ð"x?−x# &"x?−x#ŁC9"=x−x?=# dn"x?#

The nonlocal body couple on the boundary surface is mainly proportional to the _rst order
gradient of the local rotation[ It is more reasonable to consider the e}ect of _rst order gradient of
local rotation on the Cosserat surface[ If the nonlocal e}ect from the nearest atoms is only
considered and due to the property of nonlocal characteristic functions suggested in Part 0\ the
nonlocal body couple inside the body is only proportional to the second gradient of the local
rotation because R � 9 inside the body[ In this case that the surface nonlocal couple R is ignored\
the antisymmetric stress can be expressed as the following
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e] t � −
b

1
91u � −

b

3
91"9×u# "28#

or

eijktij¦ca91uk � 9 "39#

where

uk � −
0

1
eijkuði\jŁ\ ca �

b

1
[

The equation is exactly the same as the equilibrium equation of moment in couple stress theory
given by

eijktij¦Mik\i � 9 "30#

While the constitutive equation of the moment is

Mij � ca

1uj

1xi

"31#

Substituting eqn "31# into eqn "30# reduces to eqn "39# regarded as the constitutive equation of
antisymmetric stresses in nonlocal elasticity[ It is noted that ca is proportional to a1C9 "a is the
interval distance of atoms# while C9 is the physical constant associated with moment constants
connecting the atomic lattices[ The physical meaning of ca is the modulus of moment stress[

We consider the case that the discrete system of Born|s model is reduced by a granular material
with contact of inter!particles\ in which Gn and Gs represent the sti}nesses of contact moment along
normal and tangential directions\ respectively[ From the micromechanics of granular material\ we
have that ca � a"Gn−Gs#r

1 "r is the radius of particle size and a is a geometric parameter# "see
Chang and Gao\ 0884#[ By comparing ca with C9 and contact sti}nesses Gn\ Gs we also _nd out the
physical meaning of C9 which represents microscopic characteristics of the materials[

4[2[ Hi`her `radient theory can be re`arded as _rst order approximation of nonlocal theory

The constitutive equation of symmetric stress derived in this paper is the same as Kroner
and Eringen|s original work in nonlocal elasticity "Kroner\ 0856^ Eringen\ 0861#[ The nonlocal
characteristic functions proposed by Eringen "see Eringen\ 0865^ Eringen et al[\ 0866# are

ðl0"=x−x?=#\ m0"=x−x?=#¦n0"=x−x?=#Ł � ðl9\ 1m9Ła"=x−x?=#−ðl9\ 1m9Łd"=x−x?=# "32#

where ðl9\ m9Ł are Lame� constants[
Then\ the constitutive equation of symmetric stress becomes

tsij � gn

a"=x−x?=#t9ij"x?# dn"x?#

t9ij � l9dijekk¦1m9eij "33#

which has the same form derived from the quasicontinuum _eld theory in Part 0 "Gao\ 0888#[
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The nonlocal attenuating function a"=x−x?=# is a function of force constants connecting atoms
and is determined from nonlinear dispersion relation in one dimension of atomic chain from the
BornÐKarman model "see Eringen\ 0861#[ For the three!dimension case\ the nonlocal attenuating
function a"=x=# with only interaction of the nearest atoms has been suggested to be "Chang and
Gao\ 0884#]

a"=x=# �
2

pa3
"a−=x=#^ when =x= ³ a

� 9^ when =x= × a "34#

By expanding the integral function t9ij"x?# at the point x\ i[e[

t9ij"x?# � t9ij"x#¦"x?k−xk#
1

1xk

t9ij"x#¦
0

1
"x?k−xk#"x?l−xl#

11

1xk 1xl

t9ij"x#¦= = = "35#

By substituting eqn "35# into eqn "33#\ eliminating higher terms and directly calculating the
integrals\ we get

tsij �"0¦c91#"l9dijekk¦1m9eij# "36#

where

c �
0

1 gn

a"=x−x?=#"x?k−xk#"x?k−xk# dn"x?#[

If the antisymmetric part of the stress is neglected\ the stress becomes symmetric[ Then the
nonlocal stress can be approximately expressed as the constitutive model with higher gradient of
strain\ given by

tij � tsij �"0¦c91#"l9dijekk¦1m9eij# "37#

When c ³ 9\ the constitutive equation reduces to that suggested by Beran and McCoy "0869#[ In
fact\ the constitutive modules c of higher gradient term is associated with the internal length of
nonlocal media being the distance of atoms or lattice parameter[ So\ c should be positive[ If we
select the nonlocal characteristic function given in eqn "34#\ the higher gradient constant c is
a1:09[ For the longitudinal wave of one!dimension continuum media\ the displacement _eld is
u � ðu"x\ t#\ 9\ 9Ł[ The dynamic equation is that

ru� �"l9¦1m9# 00¦c
11

1x11
11u

1x1
"38#

The general solution for a single harmonic wave propagating along the direction x is that

u"x\ t# � A exp ði"kx−vt#Ł "49#

Substituting eqn "49# into eqn "38# gives the dispersion relation

v � v9kz0−ck1 "40#

where v9 � ðz"l9¦1m9#:rŁ^ v is frequency of wave^ k is the wave number[



J[ Gao : International Journal of Solids and Structures 25 "0888# 1848Ð18601869

Fig[ 0[

The dispersion relation given by the BornÐKarman model "Born and Huang\ 0843#\ in which
the atoms are vibrating in a small region of their equilibrium position\ gives

v � v90
1

a1 sin 0k
a

11 "41#

where a is the lattice parameter[
As shown in Fig[ 0\ the parameter c in the linear theory of higher gradient elasticity must be

positive and the best match is zc � 9[134a "or c � 9[95a1# in the Brillouin zone ð9 ³ k ³"p:a#Ł[
Obviously\ the higher gradient model with c ³ 9 is not proper for the material with atomic
microstructure[

The asymmetric theory of nonlocal elasticity suggests the general model of higher gradient
elasticity regarded as _rst!order approximation of the asymmetric nonlocal theory given by

tij �"0¦c91#ðl9dijekk¦1m9eijŁ¦
ca

1
91uði\jŁ "42#

Here the nonlocal e}ect on the surface of a body has been neglected^ if c � 9\ the model reduces
to the couple stress theory[ If c � 9 and ca � 9\ the model reduces to classic elasticity[

5[ Conclusions

The general model of nonlocal elasticity developed on the basis of micro!behavior of crystal
lattice and continuum _eld theory is asymmetric[ The antisymmetric stress is caused by nonlocal
e}ect of local rotation and anisotropy[ The higher gradient model can be reduced from the nonlocal
theory[ The couple stress theory is a special case of higher gradient theory[
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